[LeetCode]10. Regular Expression Matching

  "正则表达式匹配"

Posted by Stephen.Ri on October 1, 2017

Description

Implement regular expression matching with support for ‘.’ and ‘*’.

’.’ Matches any single character. ‘*’ Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

The function prototype should be: bool isMatch(const char *s, const char *p)

Example

isMatch(“aa”,”a”) → false isMatch(“aa”,”aa”) → true isMatch(“aaa”,”aa”) → false isMatch(“aa”, “a”) → true isMatch(“aa”, “.”) → true isMatch(“ab”, “.”) → true isMatch(“aab”, “ca*b”) → true

Discussion

这个问题可以采用动态规划。我们维护一个二位数组dpdp[i+1][j+1]记录s[i]p[j]之前的内容是否匹配。下面是dp的递推式:

dp初始都为0;

  1. 若p和s当前字符匹配:dp[i + 1][j + 1] = dp[i][j];
  2. 若p当前为*,且p前一个字符a和s当前字符a匹配,则a*可以是0,1或n个:dp[i + 1][j + 1] = (dp[i + 1][j - 1]   dp[i + 1][j]   dp[i][j + 1]);
  3. 若p当前为*,且p前一个字符a和s当前字符b不匹配,则a*只能是0个:dp[i + 1][j + 1] = dp[i + 1][j - 1]。

算法的时间复杂度为O(n^2)。

C++ Code

class Solution {
public:
    bool isMatch(string s, string p) {
        //由dp[i+1][j+1]来记录s[i]和p[j]之前是否匹配
        int dp[s.length() + 1][p.length() + 1];
        memset(dp, 0, sizeof(dp));

        dp[0][0] = 1;

        //考虑a*b*c*开头可能为空的情况
        for (int i = 1; i < p.length(); i++)
        {
            if (p[i] == '*' && dp[0][i-1])
            {
                dp[0][i+1] = 1;
            }
        }

        for(int i = 0; i < s.length(); i++)
        {
            for(int j = 0; j < p.length(); j++)
            {
                //若p和s当前字符匹配
                if(p[j] == s[i] || p[j] == '.')
                {
                    dp[i + 1][j + 1] = dp[i][j];
                }
                //若p当前为*
                if(p[j] == '*')
                {
                    //若p前一个字符a和s当前字符a匹配,则a*可以是0,1或n个
                    if(p[j - 1] == s[i] || p[j - 1] == '.')
                    {
                        dp[i + 1][j + 1] = (dp[i + 1][j - 1] || dp[i + 1][j] || dp[i][j + 1]);
                    }
                    //若p前一个字符a和s当前字符b不匹配,则a*只能是0个
                    else
                    {
                        dp[i + 1][j + 1] = dp[i + 1][j - 1];
                    }
                }
            }
        }
        return dp[s.length()][p.length()];
    }
};